Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
biorxiv; 2024.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2024.04.04.588067

ABSTRACT

Appropriate cellular recognition of viruses is essential for the generation of effective innate and adaptive antiviral immunity. Viral sensors and their signalling components thus provide a crucial first line of host defence. Many exhibit subcellular relocalisation upon activation, triggering expression of interferon and antiviral genes. To identify novel signalling factors we analysed protein relocalisation on a global scale during viral infection. CREB Regulated Transcription Coactivators-2 and 3 (CRTC2/3) exhibited early cytoplasmic-to-nuclear translocation upon a diversity of viral stimuli, in diverse cell types. This movement was depended on Mitochondrial Antiviral Signalling Protein (MAVS), cyclo-oxygenase proteins and protein kinase A. We identify a key effect of transcription stimulated by CRTC2/3 translocation as production of the pro-fibrogenic cytokine interleukin-11. This may be important clinically in viral infections associated with fibrosis, including SARS-CoV-2.


Subject(s)
Fibrosis
3.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.11.15.516323

ABSTRACT

The SARS-CoV-2 genome encodes a multitude of accessory proteins. Using comparative genomic approaches, an additional accessory protein, ORF3c, has been predicted to be encoded within the ORF3a sgmRNA. Expression of ORF3c during infection has been confirmed independently by ribosome profiling. Despite ORF3c also being present in the 2002-2003 SARS-CoV, its function has remained unexplored. Here we show that ORF3c localises to mitochondria during infection, where it inhibits innate immunity by restricting IFN-β production, but not NF-κB activation or JAK-STAT signalling downstream of type I IFN stimulation. We find that ORF3c acts after stimulation with cytoplasmic RNA helicases RIG-I or MDA5 or adaptor protein MAVS, but not after TRIF, TBK1 or phospho-IRF3 stimulation. ORF3c co-immunoprecipitates with the antiviral proteins MAVS and PGAM5 and induces MAVS cleavage by caspase-3. Together, these data provide insight into an uncharacterised mechanism of innate immune evasion by this important human pathogen.

4.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-734011.v1

ABSTRACT

NP 105-113 -B*07:02 specific CD8 + T-cell responses are considered among the most dominant in SARS-CoV-2-infected individuals. We found strong association of this response with mild disease. Analysis of NP 105-113 -B*07:02 specific T-cell clones and single cell sequencing were performed concurrently, with functional avidity and anti-viral efficacy assessed using an in vitro SARS-CoV-2 infection system, and were correlated with TCR usage, transcriptome signature, and disease severity (acute N=77, convalescent N=52). We demonstrated a beneficial association of NP 105-113 -B*07:02 specific T-cells in COVID-19 disease progression, linked with expansion of T-cell precursors, high functional avidity and anti-viral effector function. Broad immune memory pools were narrowed post-infection but NP 105-113 -B*07:02 specific T-cells were maintained 6 months after infection with preserved anti-viral efficacy to the SARS-CoV-2 Victoria strain, as well as new Alpha, Beta and Gamma variants. Our data shows that NP 105-113 -B*07:02 specific T-cell responses associate with mild disease and high anti-viral efficacy, pointing to inclusion for future vaccine design.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL